

UNSTEADY GAS-DYNAMICS EFFECTS IN CAD/PAD

Hobin Lee

Chemring Energetic Devices <u>hlee@ced.us.com</u>, (630) 788-6526

2024 CAD/PAD TECHNICAL EXCHANGE WORKSHOP, NSWC IHD

WHAT IS MEANT BY UNSTEADY GAS-DYNAMICS EFFECTS?

- Rapid generation of pressure by Initiator and the delay in rupturing of closure disk produce high pressure pulse
- Complex interaction between the pressure waves while the bulk pressure inside closed bomb is increasing due to the propellant burning
- Often the high frequency fluctuations are filtered during testing or post data processing
- The high frequency pressure waves may or may not contribute significantly to the overall system performance

Unfiltered Pressure-time the Initiator

MODELS FOR ESTIMATING CAD/PAD PERFORMANCE

Reality is often *complex*, but may be understood through *simplified models*

CAD/PAD Interior Ballistics in a Nutshell

- CAD/PAD performance is a collection of multi-physics events (often occurring simultaneously)
- Assumptions can be made to simplify each of the physical events
- Integrity of the model depends on the reasonableness of the assumptions
- Testing is irreplaceable to verify the reasonableness of the assumptions

1ST ORDER (BACK OF THE ENVELOPE) MODEL FOR A CAD

- Assume instantaneous burn for the charge \rightarrow Pmax occurs before movement \rightarrow Pmax occurs in Vi
- Assume negligible resistance and no heat transfer \rightarrow isentropic work
- $pV^{\gamma} = constant$
- $W_{isen} = \int p dV = \frac{p_2 V_2 p_1 V_1}{1 \gamma}$

ONE LEVEL DEEPER MODEL: QUASI-EQUILIBRIUM INTERNAL BALLISTICS

• Major assumption: all thermodynamic properties are spatially homogeneous for each time step. For example,

 $P(V - \overline{\eta}) = m_p \overline{R}T$ Correction factor added for non-ideal gases Noble-Abel equation of state

Equation of Motion

ONE-DIMENSIONAL UNSTEADY GAS DYNAMICS MODEL

But what about the presence of pressure fluctuations?

• Major assumption: all thermodynamic properties are function of time and one spatial dimension. For example,

Unsteady gas dynamics aspect can be incorporated into the quasi-equilibrium model for a fuller simulation, including the finite burning of the propellants

COMPARISON OF MODELS

What level of fidelity is sufficient for a "good" working model?

- Depends... what fidelity is desired or required?
- However, it is important to know each model's assumptions and its limitations and *when the assumptions will significantly affect* the model's integrity.

So, when does the "unsteadiness" or pressure fluctuations become significant player in CAD/PAD?

• Compare the results of two models: Quasi-equilibrium and Unsteady gas dynamics models in a simple CAD example

CAD Dimensions/Characteristics	
Initiator Output in 10cc (psi)	210
Total inertia or moving mass (lbs)	0.03
Piston Area (sq-in)	0.11
Pressure chamber ID (in)	0.37
Total stroke (in)	0.42
Initial Volume (in3)	0.03

COMPARISON OF MODELS CONTINUED

- Internal pressure predictions are significantly different between the two models as expected
- The final mass velocity predictions also differ noticeably 35% difference in kinetic energy at the end of stroke

A CRITICAL PARAMETER FOR UNSTEADY EFFECTS

Define a parameter that can indicate whether the unsteady effects will or will not be significant

• A ratio of a piston dynamics characteristics time vs. gas-dynamics characteristics time: $\tau_C = au_D / au_G$

Gas Dynamics Time

$$\tau_{G}^{*} = 5(L_{T} / c_{s}) \qquad \left(\frac{c_{s}}{c_{r}}\right)^{2} = 1 + \frac{2(\gamma - 1)}{(\gamma + 1)^{2}} \left[\gamma \left(\frac{W_{s}}{c_{r}}\right)^{2} - \left(\frac{c_{r}}{W_{s}}\right)^{2} - (\gamma - 1)\right]$$

$$\frac{p_{s}}{p_{r}} = 1 + \frac{2\gamma}{\gamma + 1} \left[\left(\frac{W_{s}}{c_{r}}\right)^{2} - 1\right] \qquad \frac{p_{r}}{p_{u}} = \frac{p_{r}}{p_{s}} \left(1 - \frac{\gamma - 1}{2\gamma} \frac{\left(\frac{p_{s}}{p_{r}} - 1\right)}{\sqrt{1 + \frac{\gamma + 1}{2\gamma}\left(\frac{p_{s}}{p_{r}} - 1\right)}}\right)^{\frac{2\gamma}{\gamma - 1}}$$

 $L_T = S +$ Initial length between Initiator and Piston face Total Stroke

 c_s = Speed of sound of initial shock

 c_r = Speed of sound of undisturbed medium downstream of initial shock

 W_s = Shock speed

 P_s = Shock pressure

- P_r = Pressure of undisturbed medium downstream of initial shock
- P_u = Pressure in initiator just prior to disk closure rupture
- γ = ratio of coefficients of heat, c_p/c_v

Piston Dynamics Time

$$\tau_{D} = \sqrt{S/a}$$
$$a = A_{p} (P_{CB}V_{CB}/V_{o})/M_{p}$$

S = Total Stroke $A_P =$ Piston Area $P_{CB} =$ Pmax in a closed bomb volume of V_{CB} $V_o =$ Initial device internal volume $M_P =$ total moving mass

* The factor 5 is applied by considering a flow discharging through a duct from a reservoir. In such a case, a steady flow condition is approximately reached when the value ct/L is about 5

A CRITICAL PARAMETER FOR UNSTEADY EFFECTS CONTINUED

- Kinetic energy difference exponentially increases beyond $\tau_c' < 0$, $\tau_c' = \tau_c 1$
- Unsteady or pressure fluctuation effects become increasingly significant when the characteristics time for gas dynamics is smaller or shorter than the inertial or piston dynamics characteristics time

τc'

CONCLUDING REMARKS AND CIBAC

- Physics in CAD/PAD are complex
- Models that illustrate the important aspects of the complex physics are possible
- Appropriate assumptions can be made for simpler models
- It's important to understand the limitations of the model due to its assumptions and when the limitations will become non-negligible factors to the desired accuracy of the model
- CIBAC, Chemring Internal Ballistics Analysis Code, is a proven tool for addressing various assumptions
 - Physics based model with modules that can be easily tailored for various scenarios or problems to solve
 - Can quickly assess the effects of assumptions
 - Can quickly provide high fidelity CAD/PAD performance estimations

The discussions on the unsteady gas-dynamics effects are based on the contents of previously published paper titled, "Unsteady Gasdynamics Effects in Pyrotechnic Actuators", H. Lee, *AIAA Journal of Spacecraft and Rockets*, Vol. 41, No. 5, September-October, 2004.

